loading . . . Synthesis of the Double Infinite-Layer Ni(I) Phase La3Ni2O5F via Sequential Topochemical Reactions Fluorination of the n = 2 Ruddlesden–Popper oxide, La3Ni2O7, with polyvinylidene fluoride yields La3Ni2O5F4, a phase in which fluoride ions have been inserted into interstitial sites in the Ruddlesden–Popper framework and also exchanged with the oxide ions residing on apical anion sites. Reaction with LiH at 190 °C reduces La3Ni2O5F4 by extracting interstitial fluoride ions. The resulting phase, La3Ni2O5F3, adopts a structure described in space group Pbcm in which the fluoride ions in the half-filled interstitial layer are arranged in chains parallel to the y-axis, and the NiO5F octahedra adopt an a–a–c+/–(a–a–)c+ tilting pattern. Further reduction with LiH at 250 °C converts La3Ni2O5F3 into La3Ni2O5F, a Ni1+ phase which adopts a T′-structure consisting of double infinite-sheets of apex linked NiO4 squares, stacked with LaOF fluorite-type layers. Magnetization and neutron diffraction data indicate La3Ni2O5F3 adopts an antiferromagnetically ordered state below TN = 225 K, while magnetization data from La3Ni2O5F exhibit a broad maximum centered at 75 K, suggestive of antiferromagnetic order. https://pubs.acs.org/doi/10.1021/jacs.5c16740