loading . . . Remodeling Activity of ChAHP Restricts Transcription Factor Access to Chromatin Transcription in eukaryotes is regulated by chromatin-based mechanisms that control nucleosome occupancy, chromatin modifications, and transcription factor binding. We have previously shown that the transcription factor ADNP forms the ChAHP complex with the chromatin remodeler CHD4 and HP1 proteins, acting as a site-specific regulator of transcription and antagonist of CTCF binding. However, the molecular basis of these functions remained unclear. Here, we demonstrate that the CHD4 subunit is essential to antagonize CTCF and silence transcription of transposons, while HP1 proteins are dispensable. Although the remodeling activity of CHD4 is not required for ChAHP chromatin association, it is critical for both transposon repression and CTCF antagonism. Our findings support a model wherein ADNP recruits chromatin remodeling activity in a sequence-specific manner, enabling transcriptional control and local modulation of chromatin architecture. ### Competing Interest Statement The Friedrich Miescher Institute for Biomedical Research (FMI) receives significant financial contributions from the Novartis Research Foundation. Published research reagents from the FMI are shared with the academic community under a Material Transfer Agreement (MTA) having terms and conditions corresponding to those of the UBMTA (Uniform Biological Material Transfer Agreement). Novartis Research Foundation, n.a. Swiss National Science Foundation, grant 310030_188835 https://www.biorxiv.org/content/10.1101/2025.07.03.662926v1