hardmaru
@hardmaru.bsky.social
📤 3844
📥 453
📝 110
I work at Sakana AI 🐟🐠🐡 →
@sakanaai.bsky.social
https://sakana.ai/careers
Just received my copy of “What Is Intelligence?” by
@blaiseaguera.bsky.social
🧠🪱 Thanks for sending it to Japan! 🗼
whatisintelligence.antikythera.org
add a skeleton here at some point
12 days ago
0
14
0
reposted by
hardmaru
Zeynep Akata
25 days ago
Due to physical resource constraints, we currently estimate that around 300–400 of the candidate papers recommended for acceptance by the ACs will need to be rejected. We seek the support of our 41 SACs in addressing this distributed optimization problem in a fair and professional manner.
9
20
3
reposted by
hardmaru
Zeynep Akata
25 days ago
NeurIPS has decided to do what ICLR did: As a SAC I received the message 👇 This is wrong! If the review process cannot handle so many papers, the conference needs yo split instead of arbitrarily rejecting 400 papers.
8
107
19
reposted by
hardmaru
24 days ago
How Sakana AI’s new evolutionary algorithm builds powerful AI models without expensive retraining
venturebeat.com/ai/how-sakan...
loading . . .
How Sakana AI’s new evolutionary algorithm builds powerful AI models without expensive retraining
M2N2 is a model merging technique that creates powerful multi-skilled agents without the high cost and data needs of retraining.
https://venturebeat.com/ai/how-sakana-ais-new-evolutionary-algorithm-builds-powerful-ai-models-without-expensive-retraining/
0
8
2
reposted by
hardmaru
24 days ago
We are honored that Sakana AI’s CEO David Ha (
@hardmaru.bsky.social
) has been named to the TIME 100 AI 2025 list. Full List:
time.com/time100ai
We’re truly grateful for the recognition and will continue our mission to build a frontier AI company in Japan. Thank you for your support!
0
12
1
Why Greatness Cannot Be Planned Both the English and Japanese editions now found a home in the Sakana AI library ✨
@sakanaai.bsky.social
28 days ago
0
21
1
Our new GECCO’25 paper builds on our past work, showing how AI models can be evolved like organisms. By letting models evolve their own merging boundaries, compete to specialize, and find ‘attractive’ partners to merge with, we can create adaptive and robust AI ecosystems.
arxiv.org/abs/2508.16204
add a skeleton here at some point
29 days ago
1
41
5
reposted by
hardmaru
29 days ago
What if we could evolve AI models like organisms, letting them compete, mate, and combine their strengths to produce ever-fitter offspring? Excited to share our new paper, “Competition and Attraction Improve Model Fusion” presented at GECCO 2025 (runner-up for best paper)!
arxiv.org/abs/2508.16204
2
36
17
reposted by
hardmaru
about 1 month ago
Sakana AI が募集しているSoftware Engineerの募集要項(Job Description)をアップデートしました。
sakana.ai/careers/#sof...
Sakana AIにおけるSoftware Engineerは、Applied Teamの一員としてビジネスのインパクトにつながるプロダクト開発を行っています。Frontend、Backend、Infrastructure構築の全体にわたって、AI技術を組み込んだアプリケーションの設計・開発に挑戦いただける方のご応募をお待ちしております!
1
1
1
1910: The Year the Modern World Lost Its Mind Good piece comparing the anxieties of the early 1900s, an era of great and rapid technological change, to the present time.
www.derekthompson.org/p/1910-the-y...
loading . . .
1910: The Year the Modern World Lost Its Mind
What one of my favorite history books about my favorite historical period—turn-of-the-century American—tells us about technology, anxiety, and human nature
https://www.derekthompson.org/p/1910-the-year-the-modern-world-lost
about 1 month ago
3
25
4
reposted by
hardmaru
about 1 month ago
8/7に、Sakana AIは初となるApplied Research Engineer向けのOpen Houseを開催しました。現地で70名、オンラインで200名超の方にご参加いただいた本イベントのレポートを公開します。
sakana.ai/open-house-2...
イベントでは共同創業者2名も登壇し、研究開発とビジネスの両輪をどう回し、日本や世界の産業・コミュニティにどう貢献していくかを語りました。また、現場で活躍するAppliedチームのメンバーが、チームの特徴や働き方、AIエージェント開発の実態、Researchチームとの連携などについて紹介しました。
0
2
1
reposted by
hardmaru
about 1 month ago
Coverage of Darwin Gödel Machine and The AI Scientist in MIT Technology Review article.
@technologyreview.com
www.technologyreview.com/2025/08/06/1...
loading . . .
Five ways that AI is learning to improve itself
From coding to hardware, LLMs are speeding up research progress in artificial intelligence. It could be the most important trend in AI today.
https://www.technologyreview.com/2025/08/06/1121193/five-ways-that-ai-is-learning-to-improve-itself/
0
5
2
reposted by
hardmaru
about 2 months ago
【UI/UXデザイナー募集】 Sakana AIでは、当社AI技術の社会実装のフェーズに進むことに伴い、一人目のUI/UXデザイナーを募集します。 詳細:
sakana.ai/careers/#uiu...
お任せしたいのはプロダクトのコンセプト設計から、プロトタイプの作成、ユーザーテストまでの全てのプロセス。AIによる価値実現に向け、目下成長するApplied Teamの一員として、Sakana AIのプロダクトづくりに挑んでくださる、意欲ある方のご応募をお待ちしています!
0
0
1
Andrew Ng’s piece on 🇺🇸 vs 🇨🇳 competition in AI worth reading: Full article:
www.deeplearning.ai/the-batch/is...
about 2 months ago
1
29
4
reposted by
hardmaru
about 2 months ago
Kenneth Stanley & Joel Lehmanによる名著『Why Greatness Cannot Be Planned』の日本語版がBNN社より刊行されました! 『目標という幻想:未知なる成果をもたらす、〈オープンエンド〉なアプローチ』 監修:岡瑞起、翻訳:牧尾晴喜、解説:岡瑞起・鈴木健 本書は、科学・技術・芸術・ビジネスなど 、あらゆる領域でブレークスルーを起こすための「目標を定めない」オープンエンドなアプローチを提唱しています。 『WIRED JAPAN』日本版にて、『目標という幻想』日本語版解説が全文公開されました。
wired.jp/article/why-...
loading . . .
偉大なことは計画できない──『目標という幻想』日本語版解説
現在のAI開発にも影響を与えた注目書『目標という幻想──未知なる成果をもたらす、〈オープンエンド〉なアプローチ』から、岡瑞起と鈴木健による解説をお届けする。
https://wired.jp/article/why-greatness-cannot-be-planned-book/
0
2
2
reposted by
hardmaru
about 2 months ago
「Sakana AIは学術研究のイメージが強いけど、どうやってそれをビジネスにつなげるの?」最先端AIの社会実装に挑む「Applied Team」インタビュー!
sakana.ai/applied-team...
Sakana AIでは、世界トップレベルの生成AI技術を社会実装するために「Applied Team」を本格始動しています。 Applied Teamについて知っていただくことを目的として、AI研究の社会実装に挑む二人のメンバーのインタビュー記事を公開しました。 「事業専門性とR&Dの強みが社内に揃っているスタートアップの環境は、世界で見ても非常に珍しいのではないかと思います。」
1
2
1
ICML’s Statement about subversive hidden LLM prompts We live in a weird timeline…
icml.cc/Conferences/...
2 months ago
5
43
11
Not Even Bronze: Evaluating LLMs on 2025 International Math Olympiad 🥉
matharena.ai/imo/
Nice blog post from the team behind MathArena: Evaluating LLMs on Uncontaminated Math Competitions (
arxiv.org/abs/2505.23281
) providing independent analysis, debunking some claims about LLM performance on IMO.
2 months ago
1
19
5
New Essay by Blaise Agüera (
@blaiseaguera.bsky.social
): “AI Is Evolving—And Changing Our Understanding Of Intelligence”. Advances in AI are making us reconsider what intelligence is and giving us clues to unlocking AI’s full potential.
www.noemamag.com/ai-is-evolvi...
loading . . .
AI Is Evolving — And Changing Our Understanding Of Intelligence | NOEMA
Advances in AI are making us reconsider what intelligence is and giving us clues to unlocking AI’s full potential.
https://www.noemamag.com/ai-is-evolving-and-changing-our-understanding-of-intelligence/
2 months ago
0
19
3
reposted by
hardmaru
2 months ago
【Sakana AIエンジニアの著書刊行🎉】 Sakana AIのApplied Research Engineer、太田真人が共著者を務める『現場で活用するための AIエージェント実践入門』(講談社)が刊行されました。進歩を続けるAIエージェント技術を実践に繋げるための知見が満載ですので、ぜひご覧ください! Amazon:
www.amazon.co.jp/dp/4065401402/
8/7開催のApplied Engineer Open Houseには太田も登壇します。ご参加お待ちしています! Event:
connpass.com/event/362760/
0
1
1
reposted by
hardmaru
2 months ago
8月7日18時からSakana AI初のApplied Engineer Open Houseを開催します! Sakana AIのApplied Teamのメンバーが業務についてやSakana AIで働く魅力についてお話しします。会場参加(抽選)または、オンライン参加が可能です。
connpass.com/event/362760/
Connpassからの参加登録をお待ちしております!
0
3
1
【ハラリ×宇多田】「人間より創造的なAI」と、どう生きるか 「昔から私たちは、皆でたき火を囲んだり、物語を語り合ったり、動物を追い払ったり、あるいはただ楽しむために音楽を奏でてきました」
newspicks.com/news/1465471...
loading . . .
【ハラリ×宇多田】「人間より創造的なAI」と、どう生きるか
AIが急速に進化している今、「創造性」という人間にとって最後のとりでにも、AIの侵食が始まっている。そんな中、世界的ベストセラー『サピエンス全史』『NEXUS 情報の人類史』(いずれも河出書房新...
https://newspicks.com/news/14654714/body/
2 months ago
0
3
0
Hikaru Utada and Yuval Noah Harari talk about The Evolution of AI and Creativity
youtu.be/xw-9mwZxl-0
Gotta admit, this was not on my bingo card!
2 months ago
0
14
3
Google’s Gemini 2.5 paper has 3295 authors
arxiv.org/abs/2507.06261
2 months ago
7
58
12
reposted by
hardmaru
Techmeme
3 months ago
Tokyo-based Sakana AI details a new Monte Carlo tree search-based technique that lets multiple LLMs cooperate on a single task, outperforming individual models (Ben Dickson/VentureBeat)
Main Link
|
Techmeme Permalink
1
16
5
reposted by
hardmaru
Techmeme Chatter
3 months ago
This post appeared under
this Techmeme headline
:
add a skeleton here at some point
0
4
2
A nice 15-min video introducing the recent thought-provoking paper: “Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis” By Akarsh Kumar, Jeff Clune, Joel Lehman, Ken Stanley Paper:
arxiv.org/abs/2505.11581
www.youtube.com/watch?v=o1q6...
loading . . .
AI doesn't work the way you think it does
YouTube video by Machine Learning Street Talk
https://www.youtube.com/watch?v=o1q6Hhz0MAg
3 months ago
2
18
2
reposted by
hardmaru
3 months ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs (VentureBeat)
venturebeat.com/ai/sakana-ai...
loading . . .
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
Sakana AI's new inference-time scaling technique uses Monte-Carlo Tree Search to orchestrate multiple LLMs to collaborate on complex tasks.
https://venturebeat.com/ai/sakana-ais-treequest-deploy-multi-model-teams-that-outperform-individual-llms-by-30/
0
3
2
reposted by
hardmaru
3 months ago
Sakana AIではApplied Teamの立ち上げを急速に進めており、優秀なApplied Research Engineerを引き続き募集しています🚀
sakana.ai/careers/#app...
正社員だけでなく学生インターンシップも歓迎です✨ 金融・保険などのエンタープライズ分野から政府・防衛などの公共分野での業務に興味のある方 最先端のAI技術を実社会に導入してインパクトを出したい方 雇用期間や勤務スタイルの相談もできますのでぜひご応募ください!
0
3
3
reposted by
hardmaru
3 months ago
Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search
arxiv.org/abs/2503.04412
1
21
5
reposted by
hardmaru
3 months ago
AIも「3人寄れば文殊の知恵」、Sakana AIが新しい推論手法を開発 3人集まれば1人よりも優れた知恵が出るということわざ「3人寄れば文殊の知恵」が、AIにも当てはまった格好だ。 🐡🐟🐠
xtech.nikkei.com/atcl/nxt/new...
loading . . .
AIも「3人寄れば文殊の知恵」、Sakana AIが新しい推論手法を開発
Sakana AIは2025年7月1日、複数の大規模言語モデル(LLM)が推論時に連携することで、単体のLLMでは解くのが困難な問題を解くアルゴリズム「Multi-LLM AB-MCTS(Adaptive Branching Monte Carlo Tree Search)」を開発したと発表した。
https://xtech.nikkei.com/atcl/nxt/news/24/02657/
0
4
2
reposted by
hardmaru
3 months ago
AIにもっと“試行錯誤”と“集合知”を─Sakana AIが開発する新アルゴリズム
wired.jp/article/saka...
フロンティアモデルと呼ばれるAIを単体ではなく“混ぜて”使えば、個々のモデル─ChatGPT、Gemini、DeepSeek─を使うよりも大幅に上回る成績を出すことが可能だと、日本発AIスタートアップのSakana AIが発表した。
loading . . .
AIにもっと“試行錯誤”と“集合知”を──Sakana AIが開発する新アルゴリズム
フロンティアモデルと呼ばれるAIを単体ではなく“混ぜて”使えば、個々のモデル──ChatGPT、Gemini、DeepSeek──を使うよりも大幅に上回る成績を出すことが可能だと、日本発AIスタートアップのSakana AIが発表した。
https://wired.jp/article/sakana-ai-new-algorithm/
0
4
2
reposted by
hardmaru
Ino.Ichi
3 months ago
Just published a blog post on our new LLM answer search method: "Multi-LLM AB-MCTS”🚀 It's designed to flexibly explore how to search and which LLM to use for any given problem. We've also open-sourced the implementation and experiments. Check it out! 🙌
add a skeleton here at some point
0
4
2
reposted by
hardmaru
3 months ago
フロンティアAIモデルを「混ぜて使う」── 「試行錯誤」と「集合知」で新たな推論時スケーリングへ ブログ:
sakana.ai/ab-mcts-jp/
論文:
arxiv.org/abs/2503.04412
このたびSakana AIは新アルゴリズム「AB-MCTS」を開発し、ARC-AGI-2ベンチマークで有望な結果を得ました。
1
2
3
Inference-Time Scaling and Collective Intelligence for Frontier AI
sakana.ai/ab-mcts/
We developed AB-MCTS, a new inference-time scaling algorithm that enables multiple frontier AI models to cooperate, achieving promising initial results on the ARC-AGI-2 benchmark.
loading . . .
3 months ago
1
15
3
reposted by
hardmaru
3 months ago
We believe this work represents a step toward a future where AI systems collaboratively tackle complex challenges, much like a team of human experts, unlocking new problem-solving capabilities and moving beyond single-model limitations. Algorithm (TreeQuest):
github.com/SakanaAI/tre...
loading . . .
GitHub - SakanaAI/treequest: A Tree Search Library with Flexible API for LLM Inference-Time Scaling
A Tree Search Library with Flexible API for LLM Inference-Time Scaling - SakanaAI/treequest
https://github.com/SakanaAI/treequest
0
5
2
reposted by
hardmaru
3 months ago
This research builds on our 2024 work on evolutionary model merge, shifting focus from “mixing to create” to “mixing to use” existing, powerful AIs. At Sakana AI, we remain committed to pioneering novel AI systems by applying nature-inspired principles such as evolution and collective intelligence.
1
6
2
reposted by
hardmaru
3 months ago
Our initial results on the ARC-AGI-2 benchmark are promising, with AB-MCTS combining o4-mini + Gemini-2.5-Pro + R1-0528, current frontier AI models, significantly outperforming individual models by a substantial margin.
1
5
2
reposted by
hardmaru
3 months ago
AB-MCTS (Adaptive Branching Monte Carlo Tree Search) harnesses these individualities, allowing multiple models to cooperate and engage in effective trial-and-error, solving challenging problems for any single AI.
1
5
2
reposted by
hardmaru
3 months ago
Inspired by the power of human collective intelligence, where great achievements arise from the collaboration of diverse minds, we believe the same principle applies to AI. Individual models possess unique strengths and biases, which we view as valuable resources for collective problem-solving.
1
7
3
reposted by
hardmaru
3 months ago
We’re excited to introduce AB-MCTS! Our new inference-time scaling algorithm enables collective intelligence for AI by allowing multiple frontier models (like Gemini 2.5 Pro, o4-mini, DeepSeek-R1-0528) to cooperate. Blog:
sakana.ai/ab-mcts
Paper:
arxiv.org/abs/2503.04412
1
15
6
reposted by
hardmaru
3 months ago
When AI Is Designed Like A Biological Brain 🧠
youtu.be/dYHkj5UlJ_E
loading . . .
When AI Is Designed Like A Biological Brain
YouTube video by bycloud
https://youtu.be/dYHkj5UlJ_E
0
8
3
Reinforcement Learning Teachers of Test Time Scaling
arxiv.org/abs/2506.08388
We introduce a new way to teach LLMs how to reason by learning to teach, not solve! Here, a teacher model is rewarded based on how effectively its explanations help the student model recover correct solutions.
add a skeleton here at some point
3 months ago
1
35
7
reposted by
hardmaru
3 months ago
RLTs are as effective even when distilling 32B students, much larger than the teacher itself—unlocking a new standard for efficiency in developing reasoning language models with RL.
0
2
1
reposted by
hardmaru
3 months ago
Remarkably, an RLT with only 7B parameters produces superior results when distilling and cold-starting students in competitive and graduate-level reasoning tasks than orders-of-magnitude larger LLMs.
1
2
1
reposted by
hardmaru
3 months ago
Enter our RLTs—a new class of models prompted with not only a problem’s question but also its solution, and directly trained to generate clear, step-by-step “explanations” to teach their students.
1
2
1
reposted by
hardmaru
3 months ago
Traditional RL focuses on “learning to solve” challenging problems with expensive LLMs and constitutes a key step in making student AI systems ultimately acquire reasoning capabilities via distillation and cold-starting.
1
3
1
reposted by
hardmaru
3 months ago
Introducing Reinforcement-Learned Teachers (RLTs): Transforming how we teach LLMs to reason with reinforcement learning (RL). Blog:
sakana.ai/rlt
Paper:
arxiv.org/abs/2506.08388
Code:
github.com/SakanaAI/RLT
We introduce a new way to teach LLMs how to reason by learning to teach, not solve.
loading . . .
2
33
8
reposted by
hardmaru
3 months ago
Japanese AI start-up challenges titans with lean innovation
www3.nhk.or.jp/nhkworld/en/...
loading . . .
Japanese AI start-up challenges titans with lean innovation | NHK WORLD-JAPAN News
Tokyo-based Sakana AI just landed a major banking client. CEO David Ha explains why customized apps focused on energy efficiency could shape the future of generative AI.
https://www3.nhk.or.jp/nhkworld/en/news/videos/20250523204933890/
0
7
1
It feels like the agent layer is almost as important as the foundation model layer for hard tasks.
3 months ago
0
5
0
Load more
feeds!
log in