loading . . . Automating the Search for Artificial Life With Foundation Models Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O. Stanley, Phillip Isola, David Ha
Artificial Life (2025) 31 (3): 368â396.
With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. Artificial Life (ALife) has not yet integrated FMs, thus presenting a major opportunity for the field to alleviate the historical burden of relying chiefly on manual design and trial and error to discover the configurations of lifelike simulations. This article presents, for the first time, a successful realization of this opportunity using vision-language FMs. The proposed approach, called automated search for Artificial Life (ASAL), (a) finds simulations that produce target phenomena, (b) discovers simulations that generate temporally open-ended novelty, and (c) illuminates an entire space of interestingly diverse simulations. Because of the generality of FMs, ASAL works effectively across a diverse range of ALife substrates, including Boids, Particle Life, the Game of Life, Lenia, and neural cellular automata. A major result highlighting the potential of this technique is the discovery of previously unseen Lenia and Boids life-forms, as well as cellular automata that are open-ended like Conwayâs Game of Life. Additionally, the use of FMs allows for the quantification of previously qualitative phenomena in a human-aligned way. This new paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.
Read the full article at: direct.mit.edu https://sco.lt/96CM3U